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We consider enzymes involved in a three-state Michaelis-Menten kinetics and submitted to well-chosen
temperature modulations of small amplitude. From the first-order amplitudes of concentration oscillations, we
design a response function that is maximum for targeted values of the chemical relaxation times. This resonant
function can be used to screen a large set of enzymes and identify the one governed by the desired kinetics. The
method gives access to all the dynamical parameters of the targeted enzyme without resorting to a fit. We show
how to estimate the precision of this parameter determination and give some hints for experimental validation.

DOI: 10.1103/PhysRevE.79.021906 PACS number�s�: 82.39.Fk, 87.19.ln

I. INTRODUCTION

A wide variety of enzymes serve as catalysts in living
organisms and their dynamical properties are essential chara-
teristics of the metabolic pathways. Recently, considerable
progress has been achieved in the determination of their mi-
croscopic structure �1–3�. The synthesis of biomimetic en-
zymes aims at reproducing the structure of the active site �4�
in the hope that the artificial enzymes possess the desired
dynamics. However, the dynamical properties are not di-
rectly connected with the structure: A small change of struc-
ture may lead to a large variation of kinetics. Typically, rate
constants may vary over ten orders of magnitude and their
determination within an order of magnitude is already very
demanding. It is therefore of primary importance to design
methods to characterize the dynamics of natural as well as
artificial enzymes.

A living cell is a complex mixture of various species en-
gaged in networks of chemical reactions �5–8�. Different ex-
perimental methods based on relaxation techniques, such as
temperature-jump or concentration-jump methods �9�, fluc-
tuation correlation spectroscopy �FCS� �10–13� and fast mix-
ing techniques �14� enable the determination of a rate con-
stant in the framework of linear response theory. Reaction
relaxation time is deduced from a fit to an exponential decay
model for the concentrations. For complex networks gov-
erned by a given, possibly nonlinear, dynamics, theoretical
optimization methods based on time series numerical treat-
ment offer an alternative �15,16�. However, these predictions
rely on fits too, which limits the precision of the rate constant
determination and requires large experimental data sets.

In this paper, we propose a method to characterize the
dynamics of enzymes, i.e., three-state linear networks obey-
ing Michaelis-Menten kinetics �8�. The method is based on
the resonant response of the enzymatic concentrations to an
appropriate periodic excitation. Recently, NaCl concentration
oscillations have been used to determine the characteristic
times of the limiting processes in a complex network such as

the osmoadaptation pathway of yeast �17�. Here, we choose
temperature modulation as a noninvasive perturbation that
reveals dynamics �18�. The originality of our approach is to
design a resonant function of the dynamical parameters from
the enzyme concentrations �19–22�, instead of fitting the
evolution of the concentrations. It enables us to determine all
the dynamical parameters associated with an enzymatic net-
work and to assess the precision of the results.

The paper is organized as follows. In Sec. II, we describe
the equilibrium state and dynamics of three-state enzymatic
networks. In Sec. III, we analytically determine the ampli-
tude of concentration oscillations due to a small temperature
modulation and show the occurrence of a resonance phenom-
enon when the chemical relaxation time matches the period
of the external excitation. Then, for a chosen temperature
modulation, we build a function of the dynamical parameters
which is maximum for a given dynamics. In Sec. IV, we
show how to use this resonant function for the screening of a
set of enzymes and for the identification of the one which is
the closest to the targeted dynamics. Before concluding, we
determine the rate constants of the latter and show how to
estimate the precision of the result.

II. EQUILIBRIUM STATE AND DYNAMICS OF A THREE-
STATE MICHAELIS-MENTEN KINETICS

We consider an enzyme E, involved in a three-state
Michaelis-Menten kinetics, which catalyses the transforma-
tion of a substrate S into a product P:

E + S�
k21

k
12
*

ES�
k32

k23

EP�
k

13
*

k31

E + P . �1�

The substrate and product are in great excess with respect to
the enzyme so that their concentration S and P can be con-
sidered constant. In the enzyme perspective, the reaction is
cyclic and unimolecular with three states E, ES, and EP:*anle@lptmc.jussieu.fr
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where �k21,k32,k23,k31� are first-order rate constants and
k12=k

12
* S and k13=k

13
* P are pseudo-first-order rate constants.

The system is supposed to be in equilibrium at temperature
T0. Consequently, the equilibrium concentrations
�E0 ,ES0 ,EP0� obey detailed balance:

k12
0 E0 = k21

0 ES0, k23
0 ES0 = k32

0 EP0, k31
0 EP0 = k13

0 E0,

�3�

which implies
k12*0k23

0 k31
0

k21
0 k32

0 k13
0*

= P
S , i.e.,

k12
0 k23

0 k31
0

k21
0 k32

0 k13
0 = 1. �4�

The equilibrium state at temperature T0 is given by the vector

E0 = � E0

ES0 � =�
1

1 +
k12

0

k21
0 +

k13
0

k31
0

1

1 +
k21

0

k12
0 +

k23
0

k32
0

� �5�

and the concentration EP0 is imposed by the conservation
relation E0+ES0+EP0=1. The linear operator M0 associated
with the dynamics of the enzymatic network is

M0 = ��11
0 �12

0

�21
0 �22

0 � , �6�

where the coefficients � jk
0 �j ,k=1,2� as a function of the rate

constants klm
0 �l ,m=1,2 ,3 ; l�m� , are given in Table I. As a

consequence of detailed balance, the matrix M0 possesses
two real and negative eigenvalues ��+ ,�−� �23,24�:

�� =
�11

0 + �22
0

2
�

1

2
	��11

0 + �22
0 �2 − 4��11

0 �22
0 − �21

0 �12
0 � .

�7�

We consider the nondegenerate case where the two eigenval-
ues are different and obey �−��+�0.

The usual change-of-basis matrix P, whose jth column is
equal to the jth normalized eigenvector of M0, may be writ-
ten as

P = �cos��+� cos��−�
sin��+� sin��−�

� . �8�

The “eigenangles” �+ and �− characterize the eigenvectors,
respectively, associated with the eigenvalues �+ and �−. The
expressions of the eigenangles as a function of the rate con-
stants are deduced from the following equations:

tan���� =
�� − �11

0

�12
0 , �9�

where the eigenvalues �� are given in Eq. �7� and the coef-
ficients �ij

0 are given in Table I. For enzymes which satisfy
detailed balance, the expression of the parameters
�+ ,�− ,E0 ,ES0 ,�+ ,�− as a function of the rate constants kij

0

can be deduced from Eqs. �5�, �7�, and �9�. Reciprocally,
Table II gives the expression of k12

0 , k23
0 and k31

0 versus
��+ ,�− ,E0 ,ES0 ,�+ ,�−�. The expressions for the three other
rate constants are deduced from mass conservation and from
Eq. �3�. When use is made of Table II, the relation between
the rate constants �Eq. �4�� can be rewritten as

E0�1 − E0�tan��+�tan��−�

+ E0ES0�tan��+� + tan��−�� + ES0�1 − ES0� = 0

�10�

which relates E0, ES0, �+, and �−. Note that the parameters

TABLE I. Expression of the coefficients � jk
i �i=0,1; j ,k=1,2�,

of the matrix Mi as a function of the zeroth and first-order rate
constants klm

i �i=0,1; l ,m=1,2 ,3; l�m�.

�11
i −�k12

i +k13
i +k31

i � �12
i k21

i −k31
i

�21
i k12

i −k32
i �22

i −�k21
i +k23

i +k32
i �

TABLE II. Expression of the rate constants k12
0 , k23

0 , and k31
0 versus �+, �−, E0, ES0, �+, �−. The four

parameters E0, ES0, �+, �− obey Eq. �10�.

k12
0

1

tan ��−� − tan ��+�

��1 − E0�tan ��+�tan ��−� + ES0 tan ��+���+− ��1 − E0�tan ��+�tan ��−�

+ ES0 tan ��−���−�
k23

0
1

tan ��−� − tan ��+�
1 − E0 − ES0

ES0 
�− E0 tan ��+�tan ��−� + ES0 tan ��+���++ �E0 tan ��+�tan ��−�

− ES0 tan ��−���−�

k31
0

1

tan ��−� − tan ��+�

�− E0 tan ��−� + ES0��+ + �E0 tan ��+� − ES0��−�
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��+ ,�−� are decoupled from E0 ,ES0 ,�+ ,�−. The equilibrium
state and dynamics of the enzyme are characterized by six
rate constants, five of which are independent and the sixth
one is determined by Eq. �4�. Equivalently, thermodynamics
and dynamics are determined by the following five param-
eters: the two eigenvalues ��+ ,�−� and three of the four pa-
rameters �E0 ,ES0 ,�+ ,�−�.

III. TEMPERATURE MODULATION AND
CONCENTRATION OSCILLATIONS

In this section, we determine the effect of a small tem-
perature modulation on the enzyme concentrations. We con-
sider an enzymatic network submitted to a sinusoidal modu-
lation of temperature T, around the temperature T0 with a
small amplitude �T0 and angular frequency �:

T = T0�1 + � sin��t��, � � 1. �11�

The angular frequency � is sufficiently small for thermal
equilibrium to be maintained. Following Arrhenius, the rate
constants can be written as

kij = rij exp�−
Ea,ij

RT
� , �12�

where rij is a pre-exponential factor, R is the individual gas
constant, and Ea,ij is the activation energy. Taking rij constant
in the relevant temperature range �25–27�, we expand the
rate constants to the first order in the perturbation and obtain

kij�t� = kij
0 + �kij

1 sin��t� , �13�

where kij
0 =rij exp�−	ij� are the rate constants at temperature

T0 and where

kij
1 = kij

0 	ij �14�

with 	ij =
Ea,ij

RT0 . According to Eq. �13�, the rate constant kij�t�
appears as the sum of an unperturbed value kij

0 at temperature
T0 and an oscillating term at the angular frequency � in
phase with the temperature to the first order in the perturba-
tion �.

A large set of three-state enzymatic networks leads to a
nearly continuous sampling of the independent parameters
�rij ,	ij� or, equivalently, of �kij

0 ,kij
1 �. However, according to

Eq. �14�, the first order correction kij
1 is the product of a

linear function of 	ij and an exponential function of 	ij hid-
den in kij

0 . In the following, for simplicity, we neglect the
linear variation of kij

1 versus 	ij with respect to its exponential
variation. It amounts to allocating the same set of 	ij to any
three-state enzymatic network. Under this approximation, we
characterize the equilibrium state and the dynamics of a net-
work submitted to a small temperature modulation by the set
of the five rate constants kij

0 only.
The instantaneous state of an enzymatic network submit-

ted to the temperature modulation of Eq. �11� is given by the
vector

E�t� = E0 + �E1�t� = � E�t�
ES�t�

� �15�

and the evolution of the system is governed by the equation

dE�t�
dt

= M�t�E�t� + F�t� , �16�

where the matrix M�t� and the vector F�t� satisfy M�t�
=M0+�M1 sin��t� and F�t�=F0+�F1 sin��t�, with

Mi = ��11
i �12

i

�21
i �22

i �, Fi = �k31
i

k32
i � for i = 0,1. �17�

The expression of the coefficients � jk
i �j ,k=1,2�, of Mi as

functions of the rate constants klm
i �l ,m=1,2 ,3; l�m�, is

given in Table I with klm
1 obeying Eq. �14�. In the eigenvector

basis, the dynamical state of an enzymatic network is given
by the vector

X�t� = P−1E�t� = X0 + �X1�t� , �18�

where P−1 is the inverse matrix of P which is defined in Eq.
�8�. The coordinates X�

1 of the vector X1�t� are associated
with the following uncoupled equations:

dX�
1 �t�
dt

= ��X�
1 �t� + ��
� sin��t� , �19�

where ��
� are the coordinates of the vector
P−1�M1 .P .X0+F1�. The coefficients 
� depend only on the
equilibrium state, the eigenangles �� and the standard en-

thalpies of reaction
�ijH

0

RT0 =	ij −	 ji as follows:


� = −

E0ES0�1 − E0 − ES0��tan����
�12H

0

RT0 + �1 + tan�����
�31H

0

RT0 
cos�����E0�1 − E0�tan����2 + 2E0ES0 tan���� + ES0�1 − ES0��

. �20�

As a consequence of detailed balance, the coefficients ��
� are linear combinations of the standard enthalpies of reaction and
they vanish for 	ij =	 ji. The system remains in equilibrium in the presence of temperature oscillations, if the three pseudoi-
somerizations of the network are thermoneutral.

We look for asymptotic solutions of Eq. �19� in the form X�
1 �t�=X�,sin

1 sin��t�+X�,cos
1 cos��t�. It reads
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X�,sin
1 ��� = − 
�

��
2

�2 + ��
2 , �21�

X�,cos
1 ��� = − 
�

���

�2 + ��
2 . �22�

Interestingly, the function �X�,cos
1 ����, if considered as a func-

tion of the eigenvalues �� at fixed angular frequency �, is
maximum for ����=�. In the following, we take advantage
of this resonance phenomenon to design a resonant function
of the dynamical parameters which characterize a network.
The expression of the vector E,

E�t� = E0 + ��Esin
1 ���sin��t� + Ecos

1 ���cos��t�� , �23�

is deduced from the vector X�t� by inverting Eq. �18�. The
expressions of the in-phase �Esin

1 ��� ,ESsin
1 ���� and out-of-

phase amplitudes �Ecos
1 ��� ,EScos

1 ���� of the concentrations
are given in Table III.

IV. DESIGN OF A RESONANT RESPONSE FUNCTION

Our goal is to design a protocol to determine which en-
zymatic network, among a collection of three-state
Michaelis-Menten networks, possesses a desired kinetics,
i.e., a set of targeted dynamical parameters ���

R ,��
R �. Our

strategy is to use the response of enzymatic networks to a
temperature modulation to reveal their dynamics and to build
a function R��� ,E0 ,��� from the out-of-phase amplitudes
�Ecos

1 ��� ,EScos
1 ���� of the concentration oscillations, which

are supposed to be experimentally accessible. The response
R is a function of the thermodynamical and dynamical pa-
rameters ��� ,E0 ,���, ES0 being deduced from detailed bal-
ance, as expressed in Eq. �10�. The function R��� ,E0 ,��� is
devised to be maximum for the so-called resonant dynamical
values ���

R ,��
R � that can be chosen at will. The existence of a

maximum of the out-of-phase coordinates X�,cos
1 ��� for

����=� prompts us to choose the following temperature
modulation at the two targeted eigenfrequencies ��+

R� and
��−

R�:

T = T0�1 + � sin���+
R�t� + � sin���−

R�t�� . �24�

Then, the dynamical state of an enzymatic network is given
by the vector

E�t� = E0 + ��Esin
1 ���+

R��sin���+
R�t� + Ecos

1 ���+
R��cos���+

R�t��

�25�

+ �Esin
1 ���−

R��sin���−
R�t� + Ecos

1 ���−
R��cos���−

R�t�� . �26�

We project the out-of-phase amplitude vector Ecos
1 ��� onto

the resonant eigendirections using the inverse matrix of PR,
which is deduced from Eq. �8� for the targeted eigenangles
��

R . We obtain the vector

S��� = �PR�−1Ecos
1 ��� �27�

whose coordinates S+��� and S−��� are the projection of the
vector Ecos

1 ��� onto the targeted eigendirections defined by
the eigenangles �+

R and �−
R. When excited at the targeted

eigenfrequency ��+
R� ���−

R��, the coordinate S+��� �S−���� is
expected to be maximum if the dynamical parameters
��� ,��� match the targeted dynamical parameters. Then, to
increase the sensitivity, we define the response function as
the following product:

R���,E0,��� = �S+���+
R����S−���−

R���

=
1

�sin��−
R − �+

R��2 �sin��−
R�Ecos

1 ���+
R��

− cos��−
R�EScos

1 ���+
R����− sin��+

R�Ecos
1 ���−

R��

+ cos��+
R�EScos

1 ���−
R��� . �28�

When use is made of the expression of the first-order ampli-
tudes Ecos

1 ��� and EScos
1 ��� given in Table III, the expression

of the response function R��� ,E0 ,��� can be rewritten as

R���,E0,��� =
�+

R�−
R

sin��−
R − �+

R�2�
+ sin��−
R − �+�

�+

��+
R�2 + �+

2

− 
− sin��−
R − �−�

�−

��+
R�2 + �−

2�
��
+ sin��+ − �+

R�
�+

��−
R�2 + �+

2

− 
− sin��− − �+
R�

�−

��−
R�2 + �−

2� . �29�

We conjecture that the function R��� ,E0 ,��� is maximum
for

�� � ��
R , �30�

TABLE III. Expression of the first-order amplitudes Esin
1 ���, ESsin

1 ��� and Ecos
1 ���, EScos

1 ��� which are,
respectively, in phase and out-of-phase with temperature. The expression of 
� is given in Eq. �20�.

Esin
1 ��� = − cos ��+�


+�+
2

�2 + �+
2 − cos ��−�


−�−
2

�2 + �−
2 ESsin

1 ��� = − sin��+�

+�+

2

�2 + �+
2 − sin��−�


−�−
2

�2 + �−
2

Ecos
1 ��� = − ��cos ��+�


+�+

�2 + �+
2 + cos ��−�


−�−

�2 + �−
2� EScos

1 ��� = − ��sin ��+�

+�+

�2 + �+
2 + sin ��−�


−�−

�2 + �−
2�
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�� � ��
R , �31�

provided the dynamics of the resonant enzymatic network is
given by the nondegenerate topology of Eq. �2�. In particular,
the conjecture requires that

E0 � 1, ES0 � 1, EP0 � 1, �+
R � �−

R, ���
R � � /2.

�32�

For instance, the case ���
R �= /2 leads to uncoupled variables

E and ES and not to a “triangle-type” mechanism.
The dependence of R��� ,E0 ,��� on the angles �� in the

prefactors of the Lorentzian functions of �� is complicated,
which makes difficult the use of the analytical expression of
the maximum. Consequently, we begin with a numerical
proof of the result announced in Eq. �31� for the eigenangles.
To this goal, we compute the values of the response function
R��� ,E0 ,��� for a large number of enzymatic networks.
Each sampled network is actually defined by five rate
constants, for example, k12

0 ,k21
0 ,k23

0 ,k32
0 ,k31

0 . The remaining
rate constant k13

0 is imposed by detailed balance �4�. The
values of the enthalpies of reaction �12H

0, �23H
0, and

�31H
0=−�12H

0−�23H
0 are supposed to be the same for all

the generated networks. We choose a targeted enzymatic net-
work which is associated with the rate constants
k12

0,R ,k21
0,R ,k23

0,R ,k32
0,R ,k31

0,R or, equivalently, with the dynamical
parameters ���

R ,��
R � deduced from Eqs. �7� and �9� and the

equilibrium state E0R ,ES0R deduced from Eq. �5�. We gener-
ate a uniform sampling in logarithmic scale for the rate con-
stants k12

0 ,k21
0 ,k23

0 ,k32
0 ,k31

0 around the targeted values which
leads to a nonuniform sampling of the eigenvalues ��, ei-
genangles ��, and equilibrium concentration E0. The value
of the equilibrium concentration ES0 is imposed by Eq. �10�.

Each generated network is submitted to the two-frequency
temperature modulation given in Eq. �24�. Table III is used to
compute the out-of-phase amplitude of the concentration os-
cillations Ecos

1 ����
R �� and EScos

1 ����
R ��. Then, we calculate the

matrix �PR�−1 by inverting Eq. �8� for ��=��
R and compute

the values of the response function R��� ,E0 ,��� for each
network, according to Eq. �28�. In order to check the validity
of the conjecture, we have investigated the behavior of
R��� ,E0 ,��� as a function of �� for many choices of tar-
geted dynamics. Figures 1 and 2 give representative results.
Due to the projection of the five-variable function
R��� ,E0 ,��� onto a one-dimensional space, the points ap-
pearing in Figs. 1 and 2 fill up the curves. As conjectured, the
response function has a maximun for ��

max���
R . As seen in

Fig. 1, the agreement between the angle �−
max, which is asso-

ciated with the maximum of R��� ,E0 ,���, and the targeted
eigenangles �−

R is excellent. For this choice of the resonant
parameters, the discrepancy between �+

max and �+
R is larger. To

quantify this discrepancy, we define a distance d� as d�

= �
�+

max−�+
R

/2 �. Such a definition takes into account the periodicity
of R��� ,E0 ,��� as a function of the eigenangle, which im-
plies that the discrepancy cannot exceed  /2. As shown in
Fig. 2, the discrepancy between the angle which is associated
with the maximum of R��� ,E0 ,��� and the targeted ei-
genangle can reach 20%.

Now, for ��=��
R , the response function, given in Eq. �29�,

is

R���,E0,�� = ��
R � = �
+

�+�+
R

��+
R�2 + �+

2��
−
�−�−

R

��−
R�2 + �−

2� ,

�33�

where the coefficients 
� are deduced from Eq. �20� for
��=��

R . The response R��� ,E0 ,��=��
R � is the product of a

Lorentzian function in �+ and another one in �−. Therefore, it
possesses an exact maximum for ��=��

R . We compare these
analytical, approximate results with the exact, numerical ap-
proach. Figure 3 represents the function R��� ,E0 ,��� de-

FIG. 1. Normalized response R��� ,E0 ,��� /Rmax versus ei-
genangle �− for enzymatic networks with three states. The figure is
plotted by using Eqs. �29�, �37�, and �9� to compute the response
function and the eigenangle �− from a uniform sampling of five
rate constants in logarithmic scale in the range −2
� log10�kij

0 � / log10�kij
0R��2 �ij=12,21,23,32,31� with a sampling

interval of 0.1 �k13
0 is imposed by detailed balance�. The resonant

dynamical parameters are �+
R=−0.784 s−1, �−

R=−20.756 s−1, �+
R

=1.659 rad, and �−
R=−0.025 rad. The figure is given for the follow-

ing standard enthalpies of reaction: �12H0 /RT0=5, �23H0 /RT0

=−10, �31H0=−�12H0−�23H0. The vertical dashed line gives the
targeted value �−

R of the eigenangle.

FIG. 2. Normalized response R��� ,E0 ,��� /Rmax versus ei-
genangle �+ for enzymatic networks with three states. Same param-
eter values as in Fig. 1 with Eq. �9� to compute �+ from the rate
constant sampling. The vertical dashed line gives the targeted value
�+

R.
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fined in Eq. �29� versus the two real eigenvalues ��+ ,�−� for
the set of generated enzymatic networks. As expected,

R��� ,E0 ,��� displays a maximum for ��
max���

R . For all the
chosen values of the targeted dynamical parameters ���

R ,��
R �,

we obtain a good agreement between ��
max and ��

R in the
eigenvalue space. Figure 3 is a projection of the five-variable
function R��� ,E0 ,��� on a two-dimensional space, so that
the points are not located on a surface but form a cloud.

The targeted dynamical parameters ���
R ,��

R � define a fam-
ily of enzymatic networks whose equilibrium state E= � E0

ES0 �
obeys Eq. �10� for ��=��

R . We use Eq. �33� and the expres-
sion of the coefficients 
� given in Eq. �20� for ���

=��
R ,��=��

R �, to determine the response function

RR�E0� = R��� = ��
R ,E0,�� = ��

R � = E0ES0EP0C���
R � ,

�34�

where ES0= 1
2 
1+E0�tan��+

R�+tan��−
R���	��E0�� with

��E0� = 
1 + E0�tan��+
R� + tan��−

R���2

+ 4E0�1 − E0�tan��+
R�tan��−

R�

and EP0=1−E0−ES0. The constant term is given by

C���
R � =

�tan��+
R�

�12H
0

RT0 + �1 + tan��+
R��

�31H
0

RT0 �tan��−
R�

�12H
0

RT0 + �1 + tan��−
R��

�31H
0

RT0 
4 cos��+

R�cos��−
R��tan��+

R� − tan��−
R��2 . �35�

Although we did not build R��� ,E0 ,��� in this goal, the
function RR�E0� reaches a maximum for a concentration Emax

that can be determined from the following equation:

	��Emax�
�1 + tan��+
R� + tan��−

R��
2 + 3Emax�tan��+
R�

+ tan��−
R�� + 2 tan��+

R�tan��−
R��2 − 3Emax��

= � �1 + tan��+
R� + tan��−

R��

��2��Emax� +
Emax

2

d�

dE0 �Emax�� . �36�

In general, Emax differs from the equilibrium state E0R asso-
ciated with the resonant set of rate constants
�k12

0,R ,k21
0,R ,k23

0,R ,k32
0,R ,k31

0,R�. As seen in Fig. 4, RR�E0� possesses
a maximum

Rmax = RR�Emax� �37�

which is reached for the predicted value Emax that is implic-
itly defined in Eq. �36�. Note that if E0=0 or E0=1, the
function vanishes and the network is associated with an
A�B type degenerate mechanism instead of the triangular
mechanism of Eq. �2�.

In conclusion of this section, the designed response func-
tion R��� ,E0 ,��� possesses a single maximum for the enzy-
matic network whose dynamics is characterized by
���

R ,Emax,��
R �. In the next section, we apply the designed

resonance phenomenon associated with ���
R ,E0 ,��

R �, for any
value of the equilibrium concentration E0, to the screening of
a large set of enzymatic networks, which are all associated
with the same equilibrium. The choice of the targeted dy-
namical parameters ��

R ,��
R as the resonant set for the func-

tion R��� ,E0 ,���, will enable us to identify the enzymatic
network, whose dynamical parameters are the closest to
��

R ,��
R .

V. APPLICATION TO SCREENING AND IDENTIFICATION
OF A TARGETED DYNAMICS

Significant advances have been made in the development
of NMR methods for studying biomolecular dynamics �28�.
NMR spectra of amino acids located in known position can
be used as markers for the conformation of the enzyme in the
presence and absence of the substrate �29–31�, so that the
states E and ES can be distinctly observed. Moreover, NMR
methods are compatible with temperature variation. The de-
velopment of microfluidics makes us confident in the genera-

0 . 5

0

- 0 . 5

0 . 5

0 . 7 5

0

- 0 . 5

1

0 . 5

R(λ±, E0, θ±)/Rmax

log10(λ+/λR
+) log10(λ−/λR

−)

FIG. 3. Normalized response R��� ,E0 ,��� /Rmax versus nor-
malized eigenvalues in logarithmic scale, log10��+ /�+

R�,
log10��− /�−

R�, for enzymatic networks with three states. Same pa-
rameter values as in Fig. 1 with Eq. �7� to compute �� from the rate
constant sampling.
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tion of temperature oscillations whose frequency can reach
105 Hz in microreactors of about 50 �m size �32,33�. It is
thus possible to observe a large range of chemical relaxation
times, from 10−5 s to a few seconds, which cover the char-
acteristic times of the fast conformational exchanges of en-
zymes �30,31�. For typical enthalpies of reaction �ijH

0

around 10 kcal mol−1 �28� at T0=310 K, the order of magni-
tude of �Ecos

1 ����
R � � or �EScos

1 ����
R � � reaches 1% of the equi-

librium concentrations �E0 ,ES0� for amplitudes of tempera-
ture oscillations �T0�0.5 K. Filtering at the appropriate
frequencies and complex Fourier transform should make
easy the determination of the out-of-phase amplitudes of the
concentrations. These techniques could be used to experi-
mentally determine the values of the response function for
many three-state enzymatic networks.

We consider a set of enzymatic networks with unknown
rate constants kij

0 and we wish to identify the one which has
the targeted values kij

0R. By “a set of networks,” we do not
mean a mixture of all the enzymatic networks to be screened,
but many tubes each containing substrate S and product P to
the same known concentrations and a single enzymatic net-
work 
E ,ES ,EP� with unknown rate constants. The targeted
equilibrium state is denoted by �E0 ,ES0�. The equilibrium
states and the enthalpies of reaction �ijH

0 at temperature T0

of each enzymatic network can be easily determined by stan-
dard methods and all the tubes with networks which are not
associated with �E0 ,ES0� can be disregarded. The dynamics
of the network in each remaining tube is characterized by
three rate constants, for example, k12

0 , k23
0 , and k31

0 . The three
other rate constants are imposed by detailed balance and are
given by k21

0 =E0k12
0 /ES0, k32

0 =ES0k23
0 / �1−E0−ES0�, and k13

0

= �1−E0−ES0�k31
0 /E0. Equivalently, each network is associ-

ated with three dynamical parameters ��� ,�+� and the value
of the eigenangle �− is imposed by detailed balance accord-
ing to Eq. �10�.

In order to find the enzymatic network whose parameter
values are the closest to the targeted ones ���

R ,�+
R�, we sug-

gest the experimentalists to follow this protocol. Each tube is
submitted to the same two-frequency temperature modula-
tion at ��+

R� and ��−
R�, as defined in Eq. �24�. The two oscillat-

ing concentrations �E�t� ,ES�t�� in each tube are collected,

thanks to NMR spectra for example. The first-order out-of-
phase amplitudes �Ecos

1 ����
R � � ,EScos

1 ����
R � �� are extracted

from the global signal thanks to Fourier transform. Then, Eq.
�28� is used to build the value of the response function
R��� ,E0 ,��� associated with each tube, i.e., with each en-
zymatic network. The resonant value RR�E0� of the function
is analytically calculated by using Eq. �34�. Finally, the val-
ues of the normalized response function
R��� ,E0 ,��� /RR�E0� are computed for each tube. According
to the results of Sec. IV, for fixed values of the equilibrium
concentrations �E0 ,ES0�, the response function R��� ,E0 ,���
is maximum for the resonant enzymatic network character-
ized by ���

R ,�+
R�. The closeness of the ratio

R��� ,E0 ,��� /RR�E0� of an unknown network to 1 induces
the closeness of its dynamical parameters ��� ,�+� to the
resonant ones ���

R ,�+
R�. The method enables us to find out the

tube which contains the enzymatic network whose dynamical
parameters are the closest to the desired ones.

In order to quantify the difference between the dynamical
parameters ��+ ,�− ,�+� of an unknown enzyme and the tar-
geted values ��+

R ,�−
R ,�+

R�, we introduce the following dis-
tance:

d =
1

3
��log10��+

�+
R�� + �log10��−

�−
R�� + �log10� tan��+�

tan��+
R�
��� .

�38�

Figure 5 represents the normalized response function
R��� ,E0 ,��� /RR�E0� versus the distance d for a sampling of
the rate constants k12

0 , k23
0 , and k31

0 . Each value of the ratio can
be related to a maximum distance. For example, if the set
contains an enzyme ET �with T for target� such that
RT��� ,E0 ,��� /RR�E0��0.8, then, we deduce from Fig. 5

FIG. 4. Normalized response R��� ,E0 ,��� /Rmax versus equi-
librium concentration E0 for enzymatic networks with three states.
Same parameter values as in Fig. 1. The vertical dashed line gives
the implicit analytical prediction for Emax deduced from Eq. �36�.

FIG. 5. Normalized response R��� ,E0 ,��� /RR�E0� versus the
distance d for enzymatic networks with the same equilibrium state
�E0=0.741, ES0=0.185�. The figure is plotted by using Eqs. �29�,
�34�, and �38� to compute the response function and the distance d
from a uniform sampling of three rate constants in logarithmic scale
in the range −2� log10�kij

0 � / log10�kij
0R��2 �i , j=12,23,31� with a

sampling interval of 0.1. The three other rate constants are imposed
by detailed balance. The targeted dynamical parameters are ��+

R

=−0.246 s−1, �−
R=−2.484 s−1, �+

R=−0.781 rad�. The value of �−
R is

deduced from Eq. �10�. The enthalpies of reaction are the same as in
Fig. 1.
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that d�0.4, i.e., that the dynamical parameters of ET differ
from the resonant values ���

R , tan��+
R�� by less than a factor

f =2.5 in average. With respect to standard dynamical param-
eter determination in biochemistry, this result is satisfying.
Then, the analytical expression of the rate constants versus
the eigenvalues, eigenangles and equilibrium state given in
Table II can be used to determine the rate constant values
associated with ET. However, the nonlinear dependence of
the rate constants on the dynamical parameters ��� ,�+� is at
the origin of a larger error on the rate constants than on the
eigenvalues and eigenangle. In particular, a small variation
of the angle �+ may induce a large variation of its tangent
and consequently of the rate constants. The precision on the
kij

0 determination strongly depends on the equilibrium con-
centrations. In Table. IV, we give an example of enzymatic
network such that d=0.2 and R��� ,E0 ,��� /RR�E0�=0.85.
The worst result is obtained for �+, which differs by less than
a factor of 3 from the resonant value. However, the rate

constants k12
0 and k21

0 differ by a factor 40 from the corre-
sponding resonant values.

Note that the screening procedure we propose does not
require any frequency sweep. To summarize the experimen-
tal protocol, each tube containing a given enzymatic network
is submitted to the targeted modulations at ���

R �, the out-of-
phase amplitudes of the concentration oscillations are mea-
sured, the resonant value RR�E0� of the function is analyti-
cally computed using Eq. �34� and the value of the
normalized response function R��� ,E0 ,��� /RR�E0� is built
using Eq. �28� for each sample tube. Finally, the resonant
values ���

R ,�+
R� of the dynamical parameters are allocated

to the enzymatic network, such that the ratio
R��� ,E0 ,��� /RR�E0� is the closest to 1. The value of this
ratio determines the accuracy of the dynamical parameter
determination.

VI. CONCLUSION

We propose a method for the screening of three-state en-
zymatic networks, which is based on the resonant response
of a biological medium to temperature modulations. This ap-
proach to biochemical dynamics enables us to identify the
enzyme associated with a targeted dynamics and to assess
the precision on the determination of all its rate constants
without resorting to a fit. The experimental validation re-
quires temperature oscillations at the characteristic chemical
frequencies and the specific detection of the different confor-
mational enzymatic states. The in vitro validation looks real-
istic if we consider the recent advances in microtechnologies
and in spectroscopies of biological species such as NMR.
Information retrieval is noninvasive and recent progress in
Raman scattering microscopy give opportunity to probe bio-
chemical reactions in living cells �34�. Our method could be
contemplated for the in vivo characterization of biological
medium dynamics.
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